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Abstraet--Happel's free surface cell model has been combined with the equations of continuity and 
motion for the creeping motion of an ensemble of spherical bubbles through a generalized Newtonian 
fluid. The resultant equations have been solved approximately, using the variational principles, and upper 
and lower bounds to the drag force experienced by a swarm of bubbles have been obtained. Wide ranges 
of gas contents and non-Newtonian fluid parameters have been covered in this study. A method for 
estimating the rise velocity of a swarm of bubbles is also presented. 

I N T R O D U C T I O N  

Dispersion of gases into liquids, a widespread phenomenon encountered in chemical and processing 
industries, commonly yields swarms of bubbles. Examples of such flow include antibiotic 
fermentation, wastewater treatment, polymer and food processing, gas-liquid reactions etc. The 
proximity of other bubbles alters the fluid streamlines around an individual bubble and thereby 
affects the rates of heat and mass transfer processes. It is often desirable to estimate the terminal 
velocity (or drag coefficient-Reynolds number relationship) of a swarm of bubbles rising through 
a pool of liquid. 

Much work on the hydrodynamics of single bubbles (e.g. Nakano & Tien 1968; Hirose & 
Moo-Young 1969; Mohan 1974; Mohan & Venkateswarlu 1976; Acharya et al. 1977; Bhavaraju 
et al. 1978; Kawase & Ulbrecht 1981; Kawase & Moo-Young 1985; Chhabra & Dhingra 1986) has 
been reported. However, very little is known about the analogous situation of a swarm of bubbles. 
Gal-Or & Waslo (1968) employed Happel's free surface cell model (1958) to account for the 
interaction between bubbles moving in a Newtonian liquid. They obtained an analytical expression 
for the terminal velocity of an ensemble of spherical bubbles rising slowly through a pool of liquid. 
Marrucci 0965), considering the case of high Reynolds number, employed irrotational flow 
approximations. 

Unfortufiately, not all liquids of practical interest exhibit Newtonian behaviour. Indeed in many 
applications encountered in fermentation, polymer processing etc. (Bhavaraju & Blanch 1976; 
Astarita & Mashelkar 1977), the liquid phase displays rheologically complex behaviour including 
shear thinning, viscoelasticity, time dependency etc. The equations governing the motion of a 
swarm of bubbles through a non-Newtonian liquid phase are hopelessly complex due to the 
non-linear relation between stress and rate-of-strain tensor. Even when only shear thinning is 
considered, the pertinent equations are not amenable to rigorous analysis, and often approximate 
methods such as variational principles and perturbation techniques are used. Indeed, there have 
been, as far as we know, only two studies (Bhavaraju et aL 1978; Jarzebski & Malinowski 1986) 
relating to the hydrodynamic behaviour of a swarm of bubbles rising through power law liquids. 
Bhavaraju et al. 0978) employed a perturbation (around the Newtonian solution) scheme, whereas 
Jarzebski & Malinowski (1986) used variational principles to obtain approximate results for the 
terminal rise velocity of a swarm of monosized spherical bubbles rising through power law liquids. 
The power law model provides the simplest representation of shear thinning behaviour but its 
inability to predict a constant viscosity in the limit of low deformation rates (as exhibited by most 
materials) raises doubts about its suitability for describing creeping flows with stagnation points 
such as flow around a bubble. Thus the power law model does not accurately describe, at least, 
a finite part of the flow domain. This limitation of the power law has been convincingly 
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demonstrated in the case of slow flow around a rigid sphere (Chhabra et al. 1980; Chhabra & 
Uhlherr 1981). 

In this work a non-Newtonian fluid model containing zero shear viscosity (the limiting value of 
viscosity at low deformation rates) is used in conjunction with the equations of continuity and of 
motion to analyse the creeping motion of an ensemble of bubbles rising through the quiescent pool 
of a non-Newtonian liquid. Variational principles proposed by Slattery (1972) have been used to 
obtain upper and lower bounds on the drag coefficient of the swarm. The results reported herein 
can readily be converted into terminal velocity in the creeping flow regime. 

PROBLEM STATEMENT 

Consider the steady, creeping and axisymmetric flow of an incompressible non-Newtonian shear 
thinning liquid past an assemblage of monosized spherical gas bubbles (with a clean interface) with 
a superficial velocity U in the positive z direction, as shown in figure 1. Happel's free surface cell 
model postulates that each bubble (of radius R) is surrounded by a hypothetical spherical envelope 

. . . . . . . . .  [ 
whose (0 surface Is frictlonless, and (n) radms is gwen by RE-3 where E is the overall average gas 
holdup (or content) of the dispersion. More detailed descriptions of the model are available in the 
literature (Happel 1958; Gal-Or & Waslo 1968). 

The equations of continuity and of motion for creeping flow in compact notations may be written 
as follows: 

V i, i = 0 [1] 

and 
z'J,j --p' + p f '=O,  [2] 

where V i, ~u and f i are components of the velocity vector, extra stress tensor and body force, 
respectively; p is the isotropic pressure and p is the liquid density. 

In a spherical coordinate system (r, O, 4~), the relevant boundary conditions are 

v,.=O at r = R ,  

T,0=0 at r = R ,  
1 
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We choose the Carreau (1972) viscosity equation to represent the shear thinning behaviour of  
the liquid phase. The Carreau viscosity equation not only describes the experimental data of  shear 
stress (or apparent viscosity)/shear rate for a variety of  materials remarkably well but has also 
yielded useful results in similar hydrodynamic situations (Chhabra & Uhlherr 1980; Chhabra & 
Raman 1984; Chhabra & Dhingra 1986). In steady shear it is written as 

t / -  ~ = (1 + 222II) ~x, [4] 
r/o -- ~/~ 

where r/ is the apparent viscosity; ~0 and r/~ are the zero shear and infinite shear viscosities, 
respectively; 2 is a time parameter of  the liquid; n is the slope of  shear stress/shear rate data in 
the shear thinning region, and 211 is the second invariant of the rate-of-deformation tensor. For 
shear thinning materials, n < 1. For most materials, usually n~ < < < no, as suggested by 
Abdel-Khalik et al. (1974) and demonstrated by Boger (1977). Furthermore, the value of  t/oo is 
reached at very high shear rates that are unlikely to be encountered in the present case, where only 
creeping flow is being considered. Thus [4] is re-written as 

= ~/0 (1 + 2~?II)% -t. [5] 

Due to symmetry in the q9 direction, the flow is two-dimensional, whence a stream function ~/' can 
be defined such that the equation of  continuity is automatically satisfied. The two non-zero 
components of the velocity vector are related to the stream function as 

1 a¢ 
V, = r 2 s i n  0 O0 

and 
1 O~O 

vo = • [6] 
r sin 0 dr 

The simultaneous solution of  [1]-[6] would yield expressions for stream function, stress and 
pressure fields which, in turn, can be used to derive integrated quantities such as drag force. 

ANALYSIS  

Slattery (1972) presented the following two variational principles for the creeping and steady flow 
of an incompressible fluid: 

velocity variational principle 

V - S  v 

stress variational principle 

H,= - fzE* dV + fs V.([T- p~q*.n)dS; [8] 
t 

where the quantities with an asterisk appearing in [7] are evaluated from a trial stream function 
that satisfies the equation of continuity and the appropriate boundary conditions on Sv; the latter 
being the part of  the bounding surface (S) on which the velocity is explicitly specified. Likewise, 
the quantities with an asterisk appearing in [8] are obtained from a trial extra stress profile that 
satisfies Cauchy's first law and the prescribed boundary condition for stress on St. Chhabra & 
Raman (1984) showed that for the flow of a Carreau model fluid: 

2Jv>~ILJ v tr(~ . V V ) d V ]  ~> (n + 1)H~. [9] 

Thus the functionals Jv and H, provide upper and lower bounds on the quantity 

[fv tr(, .vv)dV], 
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which is the rate of  energy dissipation per unit volume of the flow system. In this formulation, 
however, the contribution of the dispersed phase to the energy dissipation has been neglected. El 
and Ec appearing in [7] and [8] are known as work and complementary work functions respectively, 
and for a Carreau model fluid are given by (Chhabra & Raman 1984) 

qo + 2 2 2 I I ) ~  l] [10] E~ = (n + 1)2 ~ [(1 

and 

rio 
Ec=2r / ° ( l+222I I ) "@' I I  ( n + l ) 2 2 [ ( 1 + 2 2 2 I I ) 2 ~ - 1 ] "  [ll] 

The usefulness of  these variational principles in obtaining approximate solutions to similar 
hydrodynamic problems involving the creeping flow of non-Newtonian fluids has been illustrated 
in a number of papers, e.g. Mohan & Venkateswarlu (1976), Chhabra & Uhlherr (1980), Chhabra 
& Raman (1984), Chhabra & Dhingra (1986) and Cho & Hartnett (1983). 

U P P E R  B O U N D  C A L C U L A T I O N S  

The calcqlation of  upper bound on the drag force experienced by a swarm of bubbles requires 
the knowledge of  a trial stream function. The following trial stream function in dimensionless form, 
previously used for the slow flow past an assemblage of  rigid spheres (Chhabra & Raman 1984), 
is adopted here: 

=sin20 A l x 2 + A 2 x ~ +  - + A 4  x4 [12] 
X 

where ~ is the dimensionless stream function, Aj-A4 are four constants which are to be evaluated 
using the boundary conditions given by [3] and x is the dimensionless radial coordinate defined 
as r/R. The four constants ArA4  are determined as 

3 
A 2 = 

(tr + 1)(a -4 ) (E  zS~ - 1)' 

A2 
Ai =-7-(tr  + l)(tr --4), 

O 

A3 = A--S: (or - 1)(a - 2) (1 - E~5-~), 
6 (E~- 1) 

A4 A 2 ( t ~ - l ) ( a - 2 )  = - -  e 3 ), [131 

where a is an unknown parameter which will be used to minimize the rate of energy dissipation. 
For the trial stream function assumed here, the second invariant of  the rate-of-deformation tensor 
in a dimensionless form is evaluated as 

-- [ 3A3/__T + 2A4 x 12 (1 22)f ~ 12 I I = 6 z 2  AE(tr - 2 ) x ~ - a -  -f 2 A2(tr - 1)(tr - 2 ) x ° - 3 +  +6A4x  . [14] 

From a macroscopic mechanical energy balance, it can be easily shown that 

UFd = .Iv tr(~" VV) d V, [15] 

where Fd is the drag force experienced by the swarm of bubbles. 
An individual bubble is bounded by the spherical surface x = 1, with the normal pointing 

radially outward; and the surrounding liquid is bounded by the hypothetical envelope of  
radius x = c -I, with the normal pointing inward. If  z,0 = 0 at x = 1 and at x = E-t, and vr = 0 at 
x = 1, the surface integral appearing in [7] vanishes. Under these conditions [9], [10] and [15] can 



RISE VELOCITY OF A SWARM OF SPHERICAL BUBBLES 365 

be combined, and the non-dimensionalization yields 

x=C~e<~XuB=min {3El(2+ l) f~l f~13I(l + 2E2I--i*)"--~2~- l]y-4 dy dzt, [16] 

where X is known as the drag correction factor, to be multiplied by the Stokes drag (for a rigid 
sphere) to obtain the drag coefficient of a swarm; CD is the drag coefficient (=  Fd/½PU 2. nR2); Re 
is the Reynolds number, defined as 2pUR/qo; XUB is the upper bound on X; E is the dynamic 
parameter arising from the non-dimensionalization of the governing equations, and is defined as 
2U/R; y is the reciprocal radial coordinate (I/x); and z denotes cos 0. Thus the minimization of 
the r.h.s, of [16] yields the value of XUB. 

LOWER BOUND CALCULATIONS 

The calculation of tile lower bound on X requires the knowledge of the components of the extra 
stress tensor which satisfy Cauchy's first law and prescribed boundary conditions. We choose here 
the same stress components as used by Chhabra & Dhingra (1986) for analysing the creeping flow 
around a liquid drop: 

z~6= --(GyD+G'yB)z(~-~-), 

Zo~ = Z¢,o = zr~ = z~r = 0, [17] 

where A, B, C, C', D, F, F', G and G' are unknown constants to be evaluated from the prescribed 
boundary conditions and other considerations. 

Following the considerations advanced by Mohan & Venkateswarlu (1976) and subsequently 
used by Chhabra & Raman (1984) and Chhabra & Dhingra (1986), and taking note of the fact 

_1 that T~ = 0 at the bubble surface (x = 1/y = 1) and at the free surface (x = 1/y = E 3), it is easily 
shown that 

C 
A = 0 ,  B = 4 ,  C ' = G ' = F ' = 0 ,  D = 2 ,  F = G = - ~ - .  [181 

Hence, all the constants appearing in [17] are expressible in terms of C. Furthermore, the surface 
integral appearing in the stress variational principle [8] is evaluated to be equal to -2nRq0 U2C. 
Now combining [8], [9], [11] and [18], and introducing the dimensionless variables, one obtains: 

x=C°Re24 I>XLB=max( (n+l) If' ,~3 , { ( I + 2 E  2 ~ ) ~ t ( ~ ) 2  

E2(n+l) - 1  y - 4 d y d z + C  . [19] 

Thus the maximum value of the r.h.s, of [19] yields XLB, which represents the lower limit of X for 
given values of n, E and E. However, the evaluation of the function in [19] requires the value of 
2II. This is obtained from the following relation: 

II, = 4 (1 + 2 E ~ I I )  " -  ~ I I ,  [20] 

where II, is the dimensionless second invariant of the extra stress tensor. For the assumed stress 
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profile, given by [17], II~ is given by 

- -  II, _a 2f~o = 3 c 2  [211 II~ = 2 ---- "C rr + "~'20 "I" "~2~r b "Jr- y 422 

Thus [16] and [19] are the two final working equations. 
It is worthwhile to point out here that, although in this work the drag correction factor has been 

defined witli reference, to the drag force experienced by a single rigid sphere, other definitions of 
the drag correction factor are also possible. For instance, one obvious choice is to define X as a 
deviation from the drag force experienced by a swarm of bubbles ascending in a Newtonian liquid 
(Gal-Or & Waslo 1968) under otherwise identical conditions. But it can readily be shown that the 
latter definition of X is simply related to the one used in this work via a function of gas holdup. 
Thus, it is a straightforward matter to convert the results from one form to another. 

RESULTS AND DISCUSSION 

The upper bound XuB was obtained by minimizing the r.h.s, of [16], while the lower bound XLB 
was obtained by maximizing the r.h.s, of [19]. The integrals appearing in [16] and [19] were 
evaluated numerically using the two-dimensional Simpson quadrature formula. Twenty steps in the 
radial direction and 40 steps in the 0 direction were found to be adequate; further increases in the 
number of steps changed the results by < 0.1%. The Golden section search method was used to 
extremize the r.h.s.s of [16] and [19], respectively. 

The values of the upper and lower bounds on the drag correction factor (X) were obtained over 
wide ranges of dimensionless material (n) and dynamic parameters (E, E), as given below: 

0.1~<n~<l.0; 0.005~<E~<500; 0~<E~<0.7. 

Before embarking upon the presentation of the new theoretical results obtained in this study, it 
is instructive to examine the physical significance of each of the dimensionless variables. The 
Carreau model fluid behaviour index (n) is simply a measure of the extent of shear thinning 
behaviour. The smaller the value of n, the greater is the rate of decrease of apparent viscosity with 
the increasing shear rate. The dimensionless dynamic parameter E combines the fluid property (2) 
and the kinematic condition as 2U/R, which can be re-written in the form of a ratio of a fluid 
characteristic time and a time scale of the process as 2/R/U. Hence, increasing values of E denote 
increasing importance of non-Newtonian effects. Finally, the gas holdup, c, is an operating variable 
indicating the average gas content of the dispersion; the higher the value of E, the stronger is the 
inter-bubble interaction. 

The accuracy of the numerical results was checked by considering two limiting cases: 

(i) When the gas holdup (E) is zero, Happel's free surface cell model corresponds 
to the case of a single spherical bubble surrounded by a pool of liquid. Under 
these conditions both the upper and lower bounds on the drag correction 
(X) reduce to the results for a single bubble over the whole range of 
sionless parameters n and E, as reported by Chhabra & Dhingra (1986). 
comparisons between various theories and experiments have also been reported 
elsewhere (Chhabra & Dhingra 1986). 

(ii) The second limiting case is one in which the liquid phase is Newtonian, i.e. 
or 2 = 0 or both. Under these conditions, the present upper and lower bounds 
reduce to the Newtonian limit, as given by Gal-Or & Waslo (1968), over the 
entire range of E studied in this case. 

The upper and lower bounds (XuB and XLB)  on the drag correction factor X are plotted in figures 
2-4 for three different values of the Carreau model fluid behaviour index n (0.7, 0.5, 0.1), which 
cover the conditions of moderate to high levels of shear thinning. An examination of these figures 
reveals that the drag correction factor is always greater than that experienced by a single bubble 
moving in a non-Newtonian fluid. This augmentation in drag force leads to a reduction in the rise 
velocity of a swarm of bubbles, as compared with the case of a single bubble. Furthermore, as 
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Figure 2. Upper  (a) and lower (b) bounds  on the drag correction factor for n = 0.70. 
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expected, for all values of n, the upper bound approaches the Newtonian value, i.e. 

2 
X 

3(1 - E~)' 

as the dimensionless parameter E is reduced to sufficiently small values. On the other hand, the 
lower bound reaches a limiting value which is (n + 1)/2 times the Newtonian value. The reasons 
for this behaviour are not at all clear but similar results have been reported by other workers 
(Hopke & Slattery 1970; Mohan & Venkateswarlu 1976). Further inspection of figures 2-4 suggests 
that the lower the value of n, the lower is the value of E at which the two bounds begin to deviate 
from the Newtonian value. The two bounds are reasonably close at low and high values of the 
dimensionless parameter E but show appreciable divergence from each other (though the maximum 
divergence, is only about 40%) in the intermediate range of E (~  0.5 to 1). This behaviour is much 
more clearly seen in figures 5 and 6, where the two bounds have been plotted for two different values 
of E. 

From a physical point of view, the increasing amount of gas holdup (or contents) in a dispersion 
has two implications: 

(i) It increases the number density of bubbles, which tends to cause an enhance- 
in the drag force experienced by a swarm. 

(ii) As a result of that increase in the number density of bubbles, the liquid film 
entrapped between bubbles becomes thinner and, consequently, the liquid is 
subjected to higher levels of shearing action, which leads to a reduction in the 
effective viscosity of the liquid phase. This will allow an increase in the rise 
velocity of a swarm. Since, it is not possible to calculate the effective rates of 
shear, the actual decrease in effective viscosity (as a result of more vigorous 
shearing) cannot be estimated, and it would depend upon the values of n and 
E. However, it is evident that for given values of n, E and E, the drag force 
terminal velocity) is determined by the relative magnitudes of the two opposing 
effects mentioned in the foregoing. Intuitively, it appears that for the condi- 
corresponding to a mild degree of shear thinning (e.g. the values of n being 
too different from unity, and small values of E), the increase in drag force due 
to the increased hindrance should far outweigh the reduction due to the shear 
thinning considerations, consequently, the rise velocity of a swarm should 
monotonically decrease with the gradual increase in gas holdup. This conjec- 
is supported by the behaviour observed in the case of swarms of bubbles 
ascending in Newtonian liquids wherein the rise velocity of a swarm decreases 
monotonically as the gas holdup increases. On the other hand, in the case of 
highly shear thinning conditions (n ~< 0.5 or so and moderate to high values 
dimensionless parameter E), the reduction in drag due to enhanced shearing 
likely to dominate over the increase in the drag due to the "crowding" effect. 
The net result being that the rise velocity of a swarm would increase. This 
possibly is one of the reasons for the "cross-over behaviour" seen in figure 4, 
whereas no such trend is present in figures 2 and 3 where the conditions 
correspond to a smaller degree of shear thinning behaviour. 

Finally, the form of the Carreau viscosity equation suggests that at high values of shear rate 
( x / ~  > > > 1), [5] reduces to the usual two-parameter power law model: 

r/ = (~/022) ~5-~ (2II) ~-t. [221 

Therefore, one would expect the upper and lower bounds, relating to sufficiently high values of 
the dimensionless parameter E, to approach the corresponding values obtained using the power 
law fluid model. Indeed this is so both for single bubbles as well as for swarms of bubbles moving 
through power law liquids. This behaviour occurs for E > 500 or so, and the results so obtained 
are in perfect agreement with the values reported in the literature for power law liquids (e.g. 
Chhabra & Dhingra 1986; Gummalam 1986). 

From a practical point of view, if the rheological properties of the liquid phase (r/0, 2, n), gas 
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holdup (E) and bubble size (R) are known, the rise velocity of a swarm can be estimated using the 
results reported herein. The upper and lower bounds obtained in this study can be used to calculate 
the maximum and minimum values of the rise velocity of a swarm in a given application. Since 
the location of the exact solution is not known, and in the absence of any other definite information 
available, as a first approximation the use of the arithmetic average of the two bounds is suggested. 
Unfortunately, no suitable experimental data on swarms of bubbles in non-Newtonian media are 
available to validate the predictions presented in this paper. 

CONCLUSIONS 

Using a combination of the variational principles, and Happel's free surface cell model, 
approximate results on the rise velocity of swarms of monosized spherical bubbles ascending 
through a quiescent pool of Carreau model liquids have been obtained. This investigation covers 
wide ranges of rheological behaviour (0.1 <~ n ~< 1.0 and 0.005 ~< E ~< 500) and gas holdup 
(0 ~< e ~< 0.70). From the knowledge of the bubble size, gas holdup and the liquid rheology, the 
present theory permits the prediction of lower and upper bounds on the rise velocity of a swarm 
of bubbles which, in turn, facilitates the calculation of contact time of a gas in gas-liquid contacting 
devices such as bubble columns. 
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